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Introduction -History of Commutative Algebra-

In the end of the 19th century, commutative ring theory was originally
established by D. Hilbert, proved Hilbert’s Basis Theorem.

E. Noether played a central role of the developments of the theory of
commutative algebra. At the middle of the 20th century, the notion of
homological method was innovated into commutative ring theory by many
researchers, say M. Auslander, D. A. Buchsbaum, D. Rees, D. G. Northcott,
J.-P. Serre and others.

J.-P. Serre finally proved an innovative result which claims that every
localization of a regular local ring is again regular.

Since then, and up to the present day, commutative ring theory has been
developed dramatically by investigating the theory of Cohen-Macaulay rings
and modules.
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Introduction -My research interest-

Main interest · · · Classification of (local) rings in terms of homological algebra

Hierarchy of local rings

Regular ⇒ Complete Intersection ⇒ Gorenstein ⇒ Cohen–Macaulay ⇒
Buchsbaum ⇒ generalized Cohen–Macaulay (FLC)
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Introduction -Cohen–Macaulay rings-

A Noetherian ring R satisfies the unmixedness theorem

def⇐⇒ ∀ ideal I of R generated by htR I elements is unmixed, namely,
AssR R/I = MinR R/I .

(F. S. Macaulay) Polynomial ring over a field satisfies the unmixedness
theorem.

(I. S. Cohen) Regular local ring satisfies the unmixedness theorem.

Definition 1.1

Let R be a Noetherian local ring. Then

R is a Cohen–Macaulay ring
def⇐⇒ R satisfies unmixedness theorem

⇐⇒ dimR = depthR
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Introduction -Gorenstein rings-

Definition 1.2

Let R be a Noetherian local ring. Then

R is a Gorenstein ring
def⇐⇒ idR R < ∞
⇐⇒ R is Cohen–Macaulay, R ∼= KR

Gorenstein rings =⇒ Cohen–Macaulay rings

Gorenstein rings have a beautiful symmetry.
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Introduction

Example 1.3 (Determinantal rings)

Let S = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ] (2 ≤ m ≤ n) be the polynomial ring over a
field k and put

R = S/It(X )

where 2 ≤ t ≤ m, It(X ) is the ideal of S generated by t × t-minors of X = [Xij ].

Then
R is a Gorenstein ring ⇐⇒ m = n.
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Example 1.4 (Numerical semigroup rings)

0 < a1 < a2 < · · · < aℓ ∈ Z s.t. gcd(a1, a2, . . . , aℓ) = 1

H = ⟨a1, a2, . . . , aℓ⟩ = {
∑ℓ

i=1 ciai | 0 ≤ ci ∈ Z }

R = k[[H]] := k[[ta1 , ta2 , . . . , taℓ ]] ⊆ V := k[[t]]

m = (ta1 , ta2 , . . . , taℓ)

c = c(H) := min{n ∈ Z | m ∈ H, if m ∈ Z, m ≥ n} < ∞

KR =
∑

n∈Z\H Rta−n, where a = c − 1

Then
R is a Gorenstein ring ⇐⇒ H is symmetric.

H is symmetric
def⇐⇒ ∀n ∈ Z, [ n ∈ H ⇐⇒ c − 1− n /∈ H ]

⇐⇒ ♯{n ∈ H | n < c} = ♯(N \ H)

⇐⇒ ♯(N \ H) =
c

2
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Example 1.5

(1) k[[t4, t5, t6]] : Gorenstein ring

(2) k[[t3, t5, t7]] : not Gorenstein ring

(3) k[[t3, t7, t8]] : not Gorenstein ring

H = ⟨4, 5, 6⟩ H = ⟨3, 5, 7⟩ H = ⟨3, 7, 8⟩

0 1 2 3
4 5 6 7
8 9 10 11
12 · · ·

0 1 2
3 4 5
6 7 8
9 · · ·

0 1 2
3 4 5
6 7 8
9 · · ·

KR = R KR = R + Rt2 KR = R + Rt
mKR ⊆ R mKR ⊈ R
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Question 1.6

Why are there so many Cohen-Macaulay rings which are not Gorenstein?
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Aim of this research

Find a new class of Cohen-Macaulay rings which may not be Gorenstein, but
sufficiently good next to Gorenstein rings.

· · · Almost Gorenstein rings
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Introduction

History of almost Gorenstein rings

[Barucci-Fröberg, 1997]

· · · one-dimensional analytically unramified local rings

[Goto-Matsuoka-Phuong, 2013]

· · · one-dimensional Cohen-Macaulay local rings

[Goto-Takahashi-T, 2015]

· · · higher-dimensional Cohen-Macaulay local/graded rings
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Almost Gorenstein local rings

Setting 2.1

(R,m) a Cohen-Macaulay local ring with d = dimR

|R/m| = ∞

∃ KR the canonical module of R

Definition 2.2 (Goto-Takahashi-T, 2015)

We say that R is an almost Gorenstein local ring, if ∃ an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C ) = e0m(C ).
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Look at an exact sequence

0 → R → KR → C → 0

of R-modules. If C ̸= (0), then C is Cohen-Macaulay and dimR C = d − 1.

Set R = R/[(0) :R C ].

Then ∃ f1, f2, . . . , fd−1 ∈ m s.t. (f1, f2, . . . , fd−1)R forms a minimal reduction of
m = mR. Therefore

e0m(C ) = e0m(C ) = ℓR(C/(f1, f2, . . . , fd−1)C ) ≥ ℓR(C/mC ) = µR(C ).

Thus
µR(C ) = e0m(C ) ⇐⇒ mC = (f1, f2, . . . , fd−1)C .

Hence C is a maximally generated maximal Cohen-Macaulay R-module in the
sense of B. Ulrich, which is called an Ulrich R-module.
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Definition 2.3

We say that R is an almost Gorenstein local ring, if ∃ an exact sequence

0 → R → KR → C → 0

of R-modules such that either C = (0) or C ̸= (0) and C is an Ulrich R-module.
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Theorem 2.4 (Goto-Matsuoka-Phuong)

Suppose that d = 1 and R ⊆ KR ⊆ R. Then

R is an almost Gorenstein ring ⇐⇒ mKR ⊆ R.

Example 2.5

(1) k[[t4, t5, t6]] : Gorenstein ring

(2) k[[t3, t5, t7]] : almost Gorenstein ring (mKR ⊆ R)

(3) k[[t3, t7, t8]] : not almost Gorenstein ring (mKR ⊈ R)

Moreover, if H = ⟨3, a, b⟩（3 < a < b, gcd(3, a, b) = 1), then

R : almost Gorenstein ring ⇐⇒ b = 2a− 3.
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Theorem 2.6 (NZD characterization)

(1) If R is a non-Gorenstein almost Gorenstein local ring of dimension d > 1,
then so is R/(f ) for genaral NZD f ∈ m \m2.

(2) Let f ∈ m be a NZD on R. If R/(f ) is an almost Gorenstein local ring,
then so is R. When this is the case, f /∈ m2, if R is not Gorenstein.

Corollary 2.7

Suppose that d > 0. If R/(f ) is an almost Gorenstein local ring for every NZD
f ∈ m, then R is Gorenstein.
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Example 2.8 (T, 2017)

Let S = k[[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ]] (2 ≤ m ≤ n) be the formal power series
ring over an infinite field k and put

R = S/It(X )

where 2 ≤ t ≤ m, X = [Xij ].

Then

R is an almost Gorenstein local ring ⇐⇒ m = n, or m ̸= n, t = m = 2
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Theorem 2.9

Let (S , n) be a Noetherian local ring, φ : R → S a flat local homomorphism.
Suppose that S/mS is a RLR. Then TFAE.

(1) R is an almost Gorenstein local ring.

(2) S is an almost Gorenstein local ring.

Therefore

R is almost Gorenstein ⇐⇒ R[[X1,X2, . . . ,Xn]] is almost Gorenstein.

R is almost Gorenstein ⇐⇒ R̂ is almost Gorenstein.
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The following is a generalization of the result of Goto-Matsuoka-Phuong.

Theorem 2.10

Suppose that d > 0. Let p ∈ SpecR and assume that R/p is a RLR of dimension
d − 1. Then TFAE.

(1) A = R ⋉ p is an almost Gorenstein local ring.

(2) R is an almost Gorenstein local ring.

Example 2.11

Let k be an infinite field. We consider

A = k[[X ,Y ,Z ,U,V ,W ]]/I

where

I = (X 3−Z2,Y 2−ZX )+(U,V ,W )2+(YU−XV ,ZU−XW ,ZU−YV ,ZV −YW ,X 2U−ZW ).

Then A ∼= k[[t4, t5, t6]]⋉ (t4, t5, t6)

and hence A is an almost Gorenstein local ring.
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Theorem 2.12

Let (R,m) be a Cohen-Macaulay complete local ring with dimR = 1 and assume
that R/m is algebraically closed of characteristic 0.
Suppose that R has finite CM representation type. Then R is an almost
Gorenstein local ring.
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Theorem 2.13 (Goto)

Suppose that R is a non-Gorenstein almost Gorenstein local ring with dimR ≥ 1.
Let M be a finitely generated R-module. If

ExtiR(M,R) = (0)

for ∀i ≫ 0, then pdR M < ∞.

Corollary 2.14

Suppose that R is an almost Gorenstein local ring with dimR ≥ 1. If R is not a
Gorenstein ring, then R is G-regular in the sense of [4], i.e.

GdimR M = pdR M

for every finitely generated R-module M.
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Semi-Gorenstein local rings

In this section we maintain Setting 2.1.

Definition 3.1

We say that R is a semi-Gorenstein local ring, if R is an almost Gorenstein local
ring which possesses an exact sequence

0 → R → KR → C → 0

such that either C = (0), or C is an Ulrich R-module and C = ⊕ℓ
i=1Ci for some

cyclic R-submodule Ci of C .
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Therefore, if C ̸= (0), then

Ci
∼= R/pi for ∃ pi ∈ SpecR

such that R/pi is a RLR of dimension d − 1.

Notice that

almost Gorenstein local ring with dimR = 1

almost Gorenstein local ring with r(R) ≤ 2

are semi-Gorenstein.

Proposition 3.2

Let R be a semi-Gorenstein local ring. Then Rp is semi-Gorenstein for
∀p ∈ SpecR.
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Theorem 3.3

Let (S , n) be a RLR, a ⊊ S an ideal of S with n = htS a. Let R = S/a. Then
TFAE.

(1) R is a semi-Gorenstein local ring, but not Gorenstein.

(2) R is Cohen-Macaulay, n ≥ 2, r = r(R) ≥ 2, and R has a minimal S-free
resolution of the form:

0 → Fn = S r M→ Fn−1 = Sq → Fn−2 → · · · → F1 → F0 = S → R → 0

where

tM =


y21y22 · · · y2ℓ y31y32 · · · y3ℓ · · · yr1yr2 · · · yrℓ z1z2 · · · zm
x21x22 · · · x2ℓ 0 0 0 0

0 x31x32 · · · x3ℓ 0 0 0
...

...
. . .

...
...

0 0 0 xr1xr2 · · · xrℓ 0

 ,

ℓ = n + 1, q ≥ (r − 1)ℓ, m = q − (r − 1)ℓ, and xi1, xi2, . . . , xiℓ is
a part of a regular system of parameters of S for 2 ≤ ∀i ≤ r .
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When this is the case

a = (z1, z2, . . . , zm) +
r∑

i=2

I2 (
yi1 yi2 ··· yiℓ
xi1 yi2 ··· xiℓ ) .
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Example 3.4

Let φ : S = k[[X ,Y ,Z ,W ]] −→ R = k[[t5, t6, t7, t9]] be the k-algebra map
defined by

φ(X ) = t5, φ(Y ) = t6, φ(Z ) = t7 and φ(W ) = t9.

Then
0 → S2 M→ S6 → S5 → S → R → 0,

where
tM =

(
W X 2 XY YZ Y 2−XZ Z 2−XW
X Y Z W 0 0

)
.

Hence R is semi-Gorenstein with r(R) = 2 and

Kerφ = (Y 2 − XZ ,Z 2 − XW ) + I2
(
W X 2 XY YZ
X Y Z W

)
.
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Almost Gorenstein graded rings

Setting 4.1

R =
⊕

n≥0 Rn a Cohen-Macaulay graded ring with d = dimR

(R0,m) a Noetherian local ring

|R0/m| = ∞

∃ KR the graded canonical module of R

M = mR + R+

a = a(R) := −min{n ∈ Z | [KR ]n ̸= (0)}
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Definition 4.2

We say that R is an almost Gorenstein graded ring, if ∃ an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules such that µR(C ) = e0M(C ).

Notice that

R is an almost Gorenstein graded ring

=⇒ RM is an almost Gorenstein local ring.
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Theorem 4.3

Let R = k[R1] be a Cohen-Macaulay homogeneous ring with d = dimR ≥ 1.
Suppose that |k| = ∞ and R is not a Gorenstein ring. Then TFAE.

(1) R is an almost Gorenstein graded ring and level.

(2) Q(R) is a Gorenstein ring and a(R) = 1− d.
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Example 4.4

Let S = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ] (2 ≤ m ≤ n) be the polynomial ring over
an infinite field k and put

R = S/It(X )

where 2 ≤ t ≤ m, X = [Xij ].

Then R is an almost Gorenstein graded ring if and only if either m = n, or m ̸= n
and t = m = 2.

Example 4.5

Let R = k[X1,X2, . . . ,Xd ] (d ≥ 1) be a polynomial ring over an infinite field k.
Let n ≥ 1 be an integer.

R(n) = k[Rn] is an almost Gorenstein graded ring, if d ≤ 2.

Suppose that d ≥ 3. Then R(n) is an almost Gorenstein graded ring if and
only if either n | d , or d = 3 and n = 2.
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Example 4.6

Look at the simplicial complex ∆ :

Then R = k[∆] is an almost Gorenstein graded ring of dimension 3, provided
|k | = ∞.
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Two-dimensional rational singularities

Setting 5.1

(R,m) a Cohen-Macaulay local ring with d = dimR

|R/m| = ∞

∃ KR the canonical module of R

v(R) = µR(m), e(R) = e0m(R)

G = grm(R) =
⊕

n≥0 m
n/mn+1

Theorem 5.2

(1) Suppose that R is an almost Gorenstein local ring and v(R) = e(R)+ d − 1.
Then G is an almost Gorenstein graded ring and level.

(2) Suppose that G is an almost Gorenstein graded ring and level. Then R is
an almost Gorenstein local ring.
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Corollary 5.3

Suppose that v(R) = e(R) + d − 1. Then TFAE.

(1) R is an almost Gorenstein local ring.

(2) G is an almost Gorenstein graded ring.

(3) Q(G ) is a Gorenstein ring.

Corollary 5.4

Suppose that v(R) = e(R) + d − 1 and R is a normal ring. If m is a normal ideal,
then R is an almost Gorenstein local ring.
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Corollary 5.5

Every two-dimensional rational singularity is an almost Gorenstein local ring.

Corollary 5.6

Every two-dimensional Cohen-Macaulay complete local ring R of finite CM
representation type is an almost Gorenstein local ring, provided R contains a field
of characteristic 0.
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Thank you so much for your attention.
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